6 Basic Security Concerns for SQL Databases – Part 1

January 19 2016
 

Protect against data breaches. Database administrators should be familiar with these 6 basic steps to improve database security.


Consider these scenarios: A low-level IT systems engineer spills soda, which takes down a bank of servers; a warehouse fire burns all of the patient records of a well-regarded medical firm; a government division’s entire website vanishes without a trace.

Data breaches and failures are not isolated incidents. According to the 2014 Verizon Data Breach Investigations Report, databases are one of the most critical vulnerability points in corporate data assets. Databases are targeted because their information is so valuable, and many organizations are not taking the proper steps to ensure data protection.

  • Only 5 percent of billions of dollars allocated to security products is used for security in data centers, according to a report from International Data Corporation (IDC).
  • In a July 2011 survey of employees at organizations with multiple computers connected to the Internet, almost half said they had lost or deleted data by accident.
  • According to Fortune magazine, corporate CEOs are not making data security a priority, seemingly deciding that they will handle a data problem if it actually happens.

You might think CEOs would be more concerned, even if it is just for their own survival. A 2013 data breach at Target was widely considered to be an important contributing factor to the ouster of Greg Steinhafel, then company president, CEO and chairman of the board. The Target breach affected more than 40 million debit and credit card accounts at the retailing giant. Stolen data included names of customers, their associated card numbers, security codes and expiration dates.

Although the threats to corporate database security have never been more sophisticated and organized, taking necessary steps and implementing accepted best practices will decrease the chances of a data breach, or other database security crisis, taking place at your organization.

6 Basic Security Concerns

If you are new to database administration, you may not be familiar with the basic steps you can take to improve database security. Here are the first moves you should make

  1. The physical environment. One of the most-often overlooked steps in increasing database security is locking down the physical environment. While most security threats are, in fact, at the network level, the physical environment presents opportunities for bad actors to compromise physical devices. Unhappy employees can abscond with company records, health information or credit data. To protect the physical environment, start by implementing and maintaining strict security measures that are detailed and updated on a regular basis. Severely limit access to physical devices to only a short list of employees who must have access as part of their job. Strive to educate employees and systems technicians about maintaining good security habits while operating company laptops, hard drives, and desktop computers. Lackadaisical security habits by employees can make them an easy target.
  2. Network security. Database administrators should assess any weak points in its network and how company databases connect. An updated antivirus software that runs on the network is a fundamental essential item. Also, ensure that secure firewalls are implemented on every server. Consider changing TCP/IP ports from the defaults, as the standard ports are known access points for hackers and Trojan horses.
  3. Server environment. Information in a database can appear in other areas, such as log files, depending on the nature of the operating system and database application. Because the data can appear in different areas in the server environment, you should check that every folder and file on the system is protected. Limit access as much is possible, only allowing the people who absolutely need permission to get that information. This applies to the physical machine as well. Do not provide users with elevated access when they only need lower-level permissions.
  4. Avoid over-deployment of features. Modern databases and related software have some services designed to make the database faster, more efficient and secure. At the same time, software application companies are in a very competitive field, essentially a mini arms race to provide better functionality every year. The result is that you may have deployed more services and features than you will realistically use. Review each feature that you have in place, and turn off any service that is not really needed. Doing so cuts down the number of areas or “fronts” where hackers can attack your database.
  5. Patch the system. Just like a personal computer operating system, databases must be updated on a continuing basis. Vendors constantly release patches, service packs and security updates. These are only good if you implement them right away. Here is a cautionary tale: In 2003, a computer worm called the SQL Slammer was able to penetrate tens of thousands of computer services within minutes of its release. The worm exploited a vulnerability in Microsoft’s Desktop Engines and SQL Server. A patch that fixed a weakness in the server’s buffer overflow was released the previous summer, but many companies that became infected had never patched their servers.
  6. Encrypt sensitive data. Although back-end databases might seem to be more secure than components that interface with end users, the data must still be accessed through the network, which increases its risk. Encryption cannot stop malicious hackers from attempting to access data. However, it does provide another layer of security for sensitive information such as credit card numbers.

Famous Data Breaches

Is all this overblown? Maybe stories of catastrophic database breaches are ghost stories, conjured up by senior IT managers to force implementation of inconvenient security procedures. Sadly, data breaches happen on a regular basis to small and large organizations alike. Here are some examples:

  • TJX Companies. In December 2006, TJX Companies, Inc., failed to protect its IT systems with a proper firewall. A group led by high-profile hacker Albert Gonzalez gained access to more than 90 million credit cards. He was convicted of the crime and invited to spend over 40 years in prison. Eleven other people were arrested in relation to the breach.
  • Department of Veterans Affairs. A database containing names, dates of birth, types of disability and Social Security numbers of more than 26 million veterans was stolen from an unencrypted database at the Department of Veterans Affairs. Leaders in the organization estimated that it would cost between $100 million and $500 million to cover damages resulting from the theft. This is an excellent example of human error being the softest point in the security profile. An external hard drive and laptop were stolen from the home of an analyst who worked at the department. Although the theft was reported to local police promptly, the head of the department was not notified until two weeks later. He informed federal authorities right away, but the department did not make any public statement until several days had gone by. Incredibly, an unidentified person returned the stolen data in late June 2006.
  • Sony PlayStation Network. In April 2011, more than 75 million PlayStation network accounts were compromised. The popular site was down for weeks, and industry experts estimate the company lost millions of dollars. It is still considered by many as the worst breach of a multiplayer gaming network in history. To this day, the company says it has not determined who the attacks were. The hackers were able to get the names of gamers, their email addresses, passwords, buying history, addresses and credit card numbers. Because Sony is a technology company, it was even more surprising and concerning. Consumers began to wonder: If it could happen to Sony, was their data safe at other big companies.
  • Gawker Media. Hackers breached Gawker Media, parent company of the popular gossip site Gawker.com, in December 2010. The passwords and email addresses of more than one million users of Gawker Media properties like Gawker, Gizmodo, and Lifehacker, were compromised. The company made basic security mistakes, including storing passwords in a format hackers could easily crack.

Take These Steps

In summary, basic database security is not especially difficult but requires constant vigilance and consistent effort. Here is a snapshot review:

  • Secure the physical environment.
  • Strengthen network security.
  • Limit access to the server.
  • Cut back or eliminate unneeded features.
  • Apply patches and updates immediately.
  • Encrypt sensitive data such as credit cards, bank statements, and passwords.
  • Document baseline configurations, and ensure all database administrators follow the policies.
  • Encrypt all communications between the database and applications, especially Web-based programs.
  • Match internal patch cycles to vendor release patterns.
  • Make consistent backups of critical data, and protect the backup files with database encryption.
  • Create an action plan to implement if data is lost or stolen. In the current computing environment, it is better to think in terms of when this could happen, not if it will happen.

Basic database security seems logical and obvious. However, the repeated occurrences of major and minor data breaches in organizations of all sizes indicate that company leadership, IT personnel, and database administrators are not doing all they can to implement consistent database security principles.

The cost to do otherwise is too great. Increasingly, corporate America is turning to cloud-based enterprise software. Many of today’s popular applications like Facebook, Google and Amazon rely on advanced databases and high-level computer languages to handle millions of customers accessing their information at the same time. In our next article, we take a closer look at advanced database security methods that these companies and other forward-thinking organizations use to protect their data and prevent hackers, crackers, and thieves from making off with millions of dollars worth of information.

 

Ian McGuinness
Ian is a Group Product Manager at AppDynamics, specializing in the Database Monitoring solution. Ian has over a decade of APM experience, having worked for early pioneers such as Precise Software in several technical roles, before joining Veritas and later Symantec software. Prior to joining AppDynamics, Ian was the founder of DBTuna, a heterogeneous database monitoring and diagnostic solution.

Thank you! Your submission has been received!

Oops! Something went wrong while submitting the form